General Description

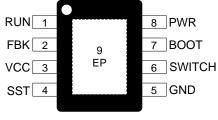
The EA8276 is a synchronous buck converter using Fixed On-Time Control Technology (COT). The main control loop of EA8276 adopts COT mode control, which can use low ESR ceramic capacitors to achieve fast transient response without external compensation components. Under the condition of 1.05V output, the 0 to 6A load jump Dropout voltage is only 50mV. The fixed ontime control technology can work in PWM mode under heavy load conditions and PFM mode under light load conditions, and can achieve seamless transition between the two modes, so that EA8276 can maintain high efficiency under light load conditions. The EA8276 operates from an input voltage range of 4.5V to 18V. The output voltage is programmable between 0.765 V and 6V. It has functions such as over-temperature protection, under-voltage protection, cycle-by-cycle current limiting and short-circuit Hiccup protection. The EA8276 is available in an 8-pin ESOP8 package al-for internal v and is designed to operate over a temperature range of -40°C to 85°C.

Features

- **COT** mode Operation
- Fast Transient Response
- MLCC Capacitor for Output is Available
- Low Output Ripple
- 4.5V to 18V Input Voltage Range
- Output Range from 0.765V to 6V
- 6A Continuous Load Current
- Fixed 750KHz Switching Frequency
- Internal Compensation
- Adjustable Soft-Start Function
- Cycle-by-Cycle Current Limit
- Auto Recovery Hiccup Mode Short Circuit Protection
- Auto Recovery OTP Protection
- Available in SOP-8 (with EP) Package

Applications

- Netcom Products
- LCD TVs and Flat TVs
- Notebooks



Pin Configurations

(TOP VIEW)

SOP-8 (with EP)

Datasheet

Pin Description

Pin Name	Function Description	Pin No.
RUN	The device turns on/turns off control input. The EA8276 on/off state can be controlled by RUN pin voltage level. Connect RUN pin to PWR pin with a $150 \text{K}\Omega$ pull up resistor for automatic startup.	1
FBK	Feedback input. Connect FBK pin and GND pin with voltage dividing resistors to set the output voltage.	2
VCC	Bias Supply output. Connect VCC pin and GND pin with a 0.1uF capacitor.	13
SST	Soft-Start input. Connect SST pin and GND pin by a ceramic capacitor. It can be used to set the soft-start time.	4
GND	Ground pin.	5
SWITCH	Internal MOSFET switching output. Connect SWITCH pin with a low pass filter circuit to obtain a stable DC output voltage.	6
воот	The power input of the internal high side N-MOSFET gate driver. Connect a 100nF ceramic capacitor from BOOT pin to SWITCH pin.	7
PWR	The EA8276 power input pin. Recommended to use two 10uF MLCC capacitors between PWR pin and GND pin. It can also use electrolytic capacitors, but need to add a 0.1uF ceramic capacitor as close to the PWR pin as possible to avoid noise interference.	8
EP	Exposed Pad. Make sure that the EP has good soldering with the GND plane of the PCB surface to achieve the desired cooling effect.	9

Function Block Diagram

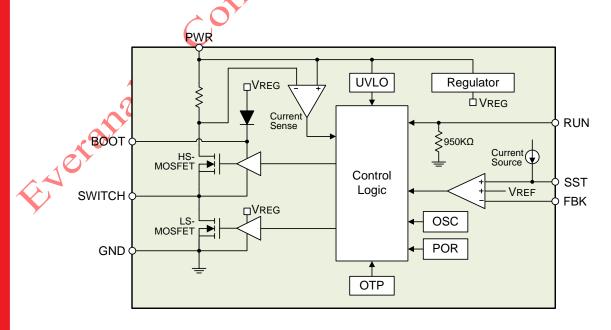


Figure 1. EA8276 internal function block diagram

18V, 6A, COT mode Synchronous Buck Converter

Everanalog Confidential. For internal use only

Datasheet

Absolute Maximum Ratings

Parameter	Value
Input Voltage (V _{PWR})	-0.3V to +19V
RUN Pin Input Voltage (V _{RUN})	-0.3V to +19V
BOOT Pin Voltage (V _{BOOT})	V _{SWITCH} -0.3V to V _{SWITCH} +6.5V
SWITCH Pin Voltage (V _{SWITCH} , 10ns transient)	-1V to +21V
All Other Pins Voltage	-0.3V to +6.5V
Maximum Junction Temperature (T _{Jmax})	-40°C to +150°C
Lead Temperature (Soldering, 10 sec)	+260°C
Storage Temperature Range (T _S)	√55°C to +150°C
ESD (HBM)	2KV

Note (1):Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to "Absolute Maximum Ratings" conditions for extended periods may affect device reliability and FOX HILL

Package Thermal Characteristics

Parameter	Value
SOP-8 (with EP) Thermal Resistance (θ _{JC})	14°C/W
SOP-8 (with EP) Thermal Resistance (θ,A)	65°C/W
SOP-8 (with EP) Power Dissipation at T_A =25°C (P_{Dmax})	1.92W

Note (1): P_{Dmax} is calculated according to the formula: $P_{DMAX}=(T_{JMAX}-T_A)/\theta_{JA}$.

Recommended Operating Conditions

Parameter	Value
Input Voltage (V _{PWR})	+4.5V to +18V
RUN Pin Input Voltage (V _{RUN})	-0.3V to +18V
Output Voltage (V _{OUT})	+0.765V to +6V

18V, 6A, COT mode Synchronous Buck Converter

Electrical Characteristics

 V_{PWR} =12V, T_A =25°C, unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage	V_{PWR}		4.5		18	V
Shutdown Supply Current	I _{SD}	V _{RUN} = 0V		3.6	10	uA
Quiescent Current	lQ	V_{RUN} = 2V, V_{FBK} = 105% V_{REF} , I_{LOAD} = 0A		400	800	J UA
UVLO Threshold	V_{UVLO}	V _{PWR} Rising		3.75	0	V
UVLO Hysteresis	$V_{\text{UV-HYST}}$			320 💪		mV
Output Load Current	I_{LOAD}				6	Α
Reference Voltage	V_{REF}	$4.5V \le V_{PWR} \le 18V$	0.75	0.765	0.780	V
Switching Frequency	F _{sw}			750		KHz
High Side MOSFET On- Resistance	R _{DS(ON)-HM}	•		65		mΩ
Low Side MOSFET On- Resistance	$R_{DS(ON)\text{-}LM}$	cox t		35		mΩ
High Side MOSFET Current Limit	I _{LIM-HM}		6.5	7.3		Α
RUN Pin Input Low Voltage	V _{RUN-L}				0.6	V
RUN Pin Input High Voltage	VRUN-H	,	1.6			V
High Side MOSFET Minimum On Time	TONMIN	V _{OUT} = 1.05V		120		ns
High Side MOSFET Minimum Off Time	Toffmin	V _{FBK} = 0.7V		260		ns
VCC Regulator Voltage	Vcc	0mA < I _{CC} < 5mA	4.8	5.0	5.2	V
VCC Regulator Current	I _{cc}	$V_{PWR} = 5V$		60		mA
SST Charge Current	I _{SST}	V _{SST} = 1V		6		uA
Thermal Shutdown Threshold	T_{OTP}			170		°C
Thermal Shutdown Hysteresis				40		°C

Note (1): MOSFET on-resistance specifications are guaranteed by correlation to wafer level measurements.

^{(2):} Thermal shutdown specifications are guaranteed by correlation to the design and characteristics analysis.

Datasheet

Application Circuit Diagram

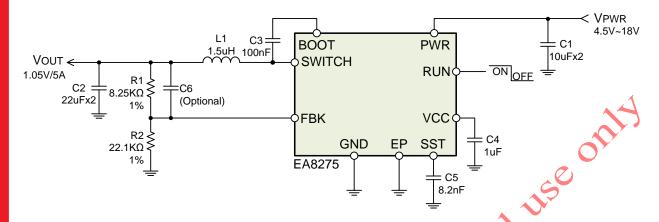
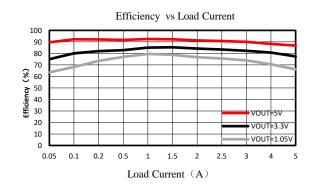
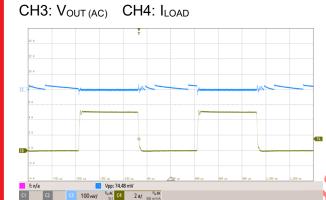


Figure 2. Typical application circuit diagram

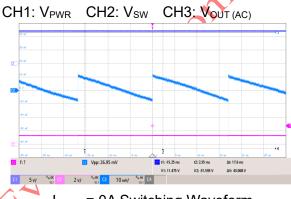
Ordering Information

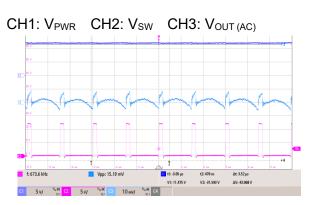

Part Number	Package Type	Packing Information
EA8276P8R	SOP-8(with EP)	Tape & Reel / 2500
Note (1):"P8": Package type code. (2):"R": Tape & Reel.	37. Fidential. Le	
	3NINGE	
Everanalog C		
\$70°		


18V, 6A, COT mode Synchronous Buck Converter

Typical Operating Characteristics

 V_{PWR} =12V, V_{OUT} =1.05V, L1=1.5uH, C1=10Fx2, C2=22uFx2, T_A =25°C, unless otherwise noted





I_{LOAD} = 0A to 6A Transient Response Waveform

I_{OUT} = 1A Power On Waveform

I_{LOAD} = 0A Switching Waveform

I_{LOAD} = 6A Switching Waveform

Datasheet

Functional Description

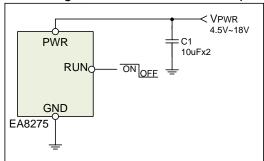
The EA8276 is a 6A synchronous buck converter in COT mode. It integrates two N-type MOSFETs. The COT control mode has excellent transient response capability, and the chip does not require additional external compensation devices. A dedicated internal circuit design allows the use of low-ESR ceramic capacitors on the periphery. The chip adopts pseudo-constant frequency control and works at a working frequency of approximately 750KHz.

Soft-Start Function

The soft-start time is adjustable, when the RUN pin goes high, the 6uA current starts to charge the SS capacitor. Make sure that the output voltage remains smoothly controlled during start-up. The formula for calculating the soft-start time is shown in below. The V_{FBK} voltage is 0.765 V and the SST pin source current is 6 μ A.

$$tss(ms) = \frac{C_{SST}(nF)xV_{FBK}x1.1}{I_{SST}(\mu A)} = \frac{C_{SST}(nF)x0.765x1.1}{6}$$

Over-Current & Short-Circuit Protection


The EA8276 has over-current protection and short-circuit protection functions, and adopts the control method of valley current limit. With the lower LS MOSFET turing on, the inductor current is monitored, and when the inductor current reaches the valley setpoint, the device enters overcurrent protection mode. At the same time, the output voltage drops. When the VFB voltage is lower than 75% of the reference value, the chip will be in a short-circuit protection state, that is, enter the hiccup mode, the chip will disable the output power stage, and soft-start restart.

18V, 6A, COT mode Synchronous Buck Converter

Application Information

Enable Control

The EA8276 use RUN pin to control the regulator turns on / turns off. When the RUN pin input voltage is higher than 1.6V(typ.), the EA8276 enters the operating mode. Drive the RUN pin input voltage lower than 0.6V to ensure the EA8276 into shutdown mode, as shown in Figure3. When the device works in the shutdown mode, the shutdown supply current is less than 10uA. The EA8276 also provides automatic startup function as shown in Figure 4. Connect RUN pin and PWR pin with a $150 \text{K}\Omega$ resistor, when the PWR supply input voltage increasing and higher than RUN pin threshold voltage, the EA8276 will enter operating mode automatically.

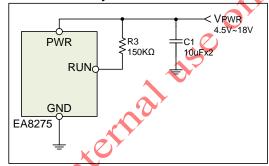


Figure 3. Enable control by RUN pin voltage

Figure 4. Automatic startup application circuit

Output Voltage Setting

The EA8276 output voltage can be set via a resistor divider (R1, R2). The output voltage is calculated by following equation:

$$V_{OUT} = 0.765 \times \frac{R1}{R2} + 0.765 \text{ V}$$

The following table lists common output voltage and the corresponding R1, R2 resistance value for reference.

1 0101 011001				
Output Voltage	R1 Resistance	R2 Resistance	C6 Capacitor	Resistance Tolerance
5V	124KΩ	22.1ΚΩ	22pF	1%
3.3V	73.2ΚΩ	22.1ΚΩ	22pF	1%
1.8V	30.1ΚΩ	22.1ΚΩ	22pF	1%
1.2V	12.7ΚΩ	22.1ΚΩ	NC	1%
1.05V	8.25 KΩ	22.1ΚΩ	NC	1%
(IV)	6.81	22.1ΚΩ	NC	1%

Input / Output Capacitors Selection

The input capacitors are used to suppress the noise amplitude of the input voltage and provide a stable and clean DC input to the device. Because the ceramic capacitor has low ESR characteristic, so it is suitable for input capacitor use. It is recommended to use X5R or X7R MLCC capacitors in order to have better temperature performance and smaller capacitance tolerance. In order to suppress the output voltage ripple, the MLCC capacitor is also the best choice. The suggested part numbers of input / output capacitors are as follows:

Datasheet

Vendor	Part Number	Capacitance	Edc	Parameter	Size
TDK	C2012X5R1C106K	10uF	16V	X5R	0805
TDK	C3216X5R1E106K	10uF	25V	X5R	1206
TDK	C2012X5R0J226K	22uF	6.3V	X5R	0805
TDK	C3216X5R1A226M	22uF	10V	X5R	1206

Output Inductor Selection

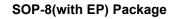
The output inductor selection mainly depends on the amount of ripple current through the inductor ΔI_{L} . Large ΔI_{L} will cause larger output voltage ripple and loss, but the user can use a smaller inductor to save cost and space. On the contrary, the larger inductance can get smaller ΔI_{L} and thus the smaller output voltage ripple and loss. But it will increase the space and the cost. The inductor value can be calculated as:

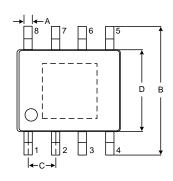
$$L = \frac{V_{PWR} - V_{OUT}}{\Delta I_L \times F_{SW}} \times \frac{V_{OUT}}{V_{PWR}}$$

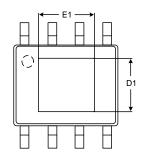
The following table lists common output voltage and the corresponding L inductance value for reference.

Output Voltage	L Inductance Value
5V	3.3uH
3.3V	2 .2uH
1.8V	1.5uH
1.2V	1.0uH ~ 1.5uH
1.05V	1.0uH ~ 1.5uH
1V	1.0uH ~ 1.5uH

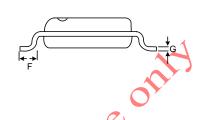
PCB Layout Recommendations

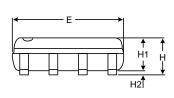

For EA8276 PCB layout considerations, please refer to the following suggestions in order to get good performance.

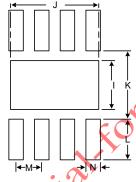

- The area close to the EA8276 should be paved as much as possible to ensure heat dissipation.
- The bottom area directly under the IC should be the dedicated ground area. The floor area should be as large as possible. Additional internal layers can be dedicated to ground planes and connected to the top layer via vias.
- Make sure that the input switch current loop is as small as possible.
- Make sure the SWITCH node size is as small and short as possible to minimize parasitic capacitance and inductance, and to minimize radiated emissions.
- Keep the PWR and GND traces as wide as possible.
- ► The VCC capacitor should be placed as close as possible to the pin and connected to GND.
- ► The voltage feedback loop should be as short as possible, preferably with a grounded shield around it.
- Cin should be as close as possible to the PWR pin.


18V, 6A, COT mode Synchronous Buck Converter

Package Information




Top View


Bottom View

v Front View

Side View

Recommended Layout Pattern

11	nit.	mm
u	IIIL.	111111

Compleat	Dimension		Counch of	Dimension	
Symbol	Min	Max	Symbol	Тур	
Α	0.32	0.52	I	1.60	
В	5.79	6.20	J	5.50	
D	3.79	4.00	K	3.00	
D1	2.16	2.42	L	2.00	
Е	4.81	5.01	М	1.27	
E1	3.05	3.51	N	0.72	
C	1.19	1.35			
T T	0.41	1.27			
G	0.17	0.25			
Н	1.26	1.71			
H1	1.26	1.56			
H2	0.00	0.15			